Approximation of random functions by stochastic Bernstein polynomials in capacity spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation with Bernstein-Szegö polynomials

We present approximation kernels for orthogonal expansions with respect to Bernstein-Szegö polynomials. The construction is derived from known results for Chebyshev polynomials of the first kind and does not pose any restrictions on the Bernstein-Szegö polynomials.

متن کامل

ON THE APPROXIMATION OF ANALYTIC FUNCTIONS BY THE q-BERNSTEIN POLYNOMIALS IN THE CASE

Abstract. Since for q > 1, the q-Bernstein polynomials Bn,q are not positive linear operators on C[0, 1], the investigation of their convergence properties turns out to be much more difficult than that in the case 0 < q < 1. In this paper, new results on the approximation of continuous functions by the q-Bernstein polynomials in the case q > 1 are presented. It is shown that if f ∈ C[0, 1] and ...

متن کامل

APPROXIMATION BY GENUINE q-BERNSTEIN-DURRMEYER POLYNOMIALS IN COMPACT DISKS

In this paper, the order of simultaneous approximation and Voronovskaja type theorems with quantitative estimate for complex genuine q-Bernstein-Durrmeyer polynomials (0 < q < 1) attached to analytic functions on compact disks are obtained. Our results show that extension of the complex genuine q-Bernstein-Durrmeyer polynomials from real intervals to compact disks in the complex plane extends a...

متن کامل

Weighted approximation of functions on the real line by Bernstein polynomials

The authors give error estimates, a Voronovskaya-type relation, strong converse results and saturation for the weighted approximation of functions on the real line with Freud weights by Bernstein-type operators. r 2004 Elsevier Inc. All rights reserved.

متن کامل

Shape restricted regression with random Bernstein polynomials

Shape restricted regressions, including isotonic regression and concave regression as special cases, are studied using priors on Bernstein polynomials and Markov chain Monte Carlo methods. These priors have large supports, select only smooth functions, can easily incorporate geometric information into the prior, and can be generated without computational difficulty. Algorithms generating priors...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Carpathian Journal of Mathematics

سال: 2021

ISSN: 1843-4401,1584-2851

DOI: 10.37193/cjm.2021.02.04